Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Pharmaceutics ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678814

RESUMO

In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood-brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.

3.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358594

RESUMO

Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients' tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance.

4.
Biomolecules ; 12(10)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291557

RESUMO

Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100-300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Animais , Camundongos , Ratos , Barreira Hematoencefálica/metabolismo , Quinases Associadas a rho/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
5.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145501

RESUMO

Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.

6.
Cancer Res ; 82(20): 3650-3658, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35839284

RESUMO

Tumor treating fields (TTFields), a new modality of cancer treatment, are electric fields transmitted transdermally to tumors. The FDA has approved TTFields for the treatment of glioblastoma multiforme and mesothelioma, and they are currently under study in many other cancer types. While antimitotic effects were the first recognized biological anticancer activity of TTFields, data have shown that tumor treating fields achieve their anticancer effects through multiple mechanisms of action. TTFields therefore have the ability to be useful for many cancer types in combination with many different treatment modalities. Here, we review the current understanding of TTFields and their mechanisms of action.


Assuntos
Antimitóticos , Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos
7.
Ann N Y Acad Sci ; 1515(1): 184-195, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716075

RESUMO

Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired-partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.


Assuntos
Síndromes da Dor Regional Complexa , MicroRNAs , Neuralgia , Animais , Barreira Hematoneural/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Síndromes da Dor Regional Complexa/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
8.
J Pain ; 23(6): 967-980, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34974173

RESUMO

Blood nerve barrier disruption and edema are common in neuropathic pain as well as in complex regional pain syndrome (CRPS). MicroRNAs (miRNA) are epigenetic multitarget switches controlling neuronal and non-neuronal cells in pain. The miR-183 complex attenuates hyperexcitability in nociceptors, but additional non-neuronal effects via transcription factors could contribute as well. This study explored exosomal miR-183 in CRPS and murine neuropathy, its effect on the microvascular barrier via transcription factor FoxO1 and tight junction protein claudin-5, and its antihyperalgesic potential. Sciatic miR-183 decreased after CCI. Substitution with perineural miR-183 mimic attenuated mechanical hypersensitivity and restored blood nerve barrier function. In vitro, serum from CCI mice und CRPS patients weakened the microvascular barrier of murine cerebellar endothelial cells, increased active FoxO1 and reduced claudin-5, concomitant with a lack of exosomal miR-183 in CRPS patients. Cellular stress also compromised the microvascular barrier which was rescued either by miR-183 mimic via FoxO1 repression or by prior silencing of Foxo1. PERSPECTIVE: Low miR-183 leading to barrier impairment via FoxO1 and subsequent claudin-5 suppression is a new aspect in the pathophysiology of CRPS and neuropathic pain. This pathway might help untangle the wide symptomatic range of CRPS and nurture further research into miRNA mimics or FoxO1 inhibitors.


Assuntos
Síndromes da Dor Regional Complexa , Proteína Forkhead Box O1 , MicroRNAs , Neuralgia , Animais , Claudina-5/genética , Claudina-5/metabolismo , Síndromes da Dor Regional Complexa/genética , Síndromes da Dor Regional Complexa/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Neuralgia/metabolismo
9.
Histochem Cell Biol ; 156(3): 283-292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34043058

RESUMO

Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Animais , Barreira Hematoencefálica/citologia , Células Cultivadas , Senescência Celular , Células Endoteliais/citologia , Camundongos , Modelos Biológicos
10.
Front Physiol ; 11: 569881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281613

RESUMO

Ischemia/reperfusion injury is a major cause of acute kidney injury (AKI). AKI is characterized by a sudden decrease in kidney function, systemic inflammation, oxidative stress, and dysregulation of the sodium, potassium, and water channels. While AKI leads to uremic encephalopathy, epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. To get more insights into kidney-brain crosstalk, we have created an in vitro co-culture model based on human kidney cells of the proximal tubule (HK-2) and brain microvascular endothelial cells (BMEC). The HK-2 cell line was grown to confluence on 6-well plates and exposed to oxygen/glucose deprivation (OGD) for 4 h. Control HK-2 cells were grown under normal conditions. The BMEC cell line cerebED was grown to confluence on transwells with 0.4 µm pores. The transwell filters seeded and grown to confluence with cereEND were inserted into the plates with HK-2 cells with or without OGD treatment. In addition, cerebEND were left untreated or treated with uremic toxins, indole-3-acetic acid (IAA) and indoxyl sulfate (IS). The protein and mRNA expression of selected BBB-typical influx transporters, efflux transporters, cellular receptors, and tight junction proteins was measured in BMECs. To validate this in vitro model of kidney-brain interaction, we isolated brain capillaries from mice exposed to bilateral renal ischemia (30 min)/reperfusion injury (24 h) and measured mRNA and protein expression as described above. Both in vitro and in vivo systems showed similar changes in the expression of drug transporters, cellular receptors, and tight junction proteins. Efflux pumps, in particular Abcb1b, Abcc1, and Abcg2, have shown increased expression in our model. Thus, our in vitro co-culture system can be used to study the cellular mechanism of kidney and brain crosstalk in renal ischemia/reperfusion injury.

11.
Front Cell Neurosci ; 14: 573950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192319

RESUMO

Ischemic stroke is one of the leading causes of death worldwide. It damages neurons and other supporting cellular elements in the brain. However, the impairment is not only confined to the region of assault but the surrounding area as well. Besides, it also brings about damage to the blood-brain barrier (BBB) which in turn leads to microvascular failure and edema. Hence, this necessitates an on-going, continuous search for intervention strategies and effective treatment. Of late, the natural sweetener stevioside proved to exhibit neuroprotective effects and therapeutic benefits against cerebral ischemia-induced injury. Its injectable formulation, isosteviol sodium (STVNA) also demonstrated favorable results. Nonetheless, its effects on the BBB have not yet been investigated to date. As such, this present study was designed to assess the effects of STVNA in our in vitro stroke model of the BBB.The integrity and permeability of the BBB are governed and maintained by tight junction proteins (TJPs) such as claudin-5 and occludin. Our data show increased claudin-5 and occludin expression in oxygen and glucose (OGD)-deprived murine brain capillary cerebellar endothelial cells (cerebEND) after STVNa treatment. Likewise, the upregulation of the transmembrane protein integrin-αv was also observed. Finally, cell volume was reduced with the simultaneous administration of STVNA and OGD in cerebEND cells. In neuropathologies such as stroke, the failure of cell volume control is a major feature leading to loss of cells in the penumbra as well as adverse outcomes. Our initial findings, therefore, point to the neuroprotective effects of STVNA at the BBB in vitro, which warrant further investigation for a possible future clinical intervention.

12.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349320

RESUMO

Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients' clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients' survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response.

13.
Methods Mol Biol ; 1717: 219-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468595

RESUMO

Traumatic brain injury (TBI) is a significant problem causing high mortality globally. Methods to increase possibilities for treatment and prevention of secondary injuries resulting from the initial physical insult are thus much needed. TBI affects the central nervous system (CNS) and the neurovascular unit as a whole in numerous ways but one of the primarily compromised components is the blood-brain barrier (BBB).In this chapter, we present a detailed procedure on how stretch injury and oxygen-glucose deprivation (OGD) are applied to brain microvascular endothelial cells of the BBB in order to replicate the actual impact they receive during TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Células Endoteliais , Modelos Neurológicos , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos
14.
Front Neurosci ; 12: 936, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618565

RESUMO

Peripheral neuropathy is accompanied by changes in the neuronal environment. The blood-nerve barrier (BNB) is crucial in protecting the neural homeostasis: Tight junctions (TJ) seal paracellular spaces and thus prevent external stimuli from entering. In different models of neuropathic pain, the BNB is impaired, thus contributing to local damage, immune cell invasion and, ultimately, the development of neuropathy with its symptoms. In this study, we examined changes in expression and microstructural localization of two key tight junction proteins (TJP), claudin-1 and the cytoplasmic anchoring ZO-1, in the sciatic nerve of mice subjected to chronic constriction injury (CCI). Via qPCR and analysis of fluorescence immunohistochemistry, a marked downregulation of mRNA as well as decreased fluorescence intensity were observed in the nerve for both proteins. Moreover, a distinct zig-zag structure for both proteins located at cell-cell contacts, indicative of the localization of TJs, was observed in the perineurial compartment of sham-operated animals. This microstructural location in cell-cell-contacts was lost in neuropathy as semiquantified via computational analysis, based on a novel algorithm. In summary, we provide evidence that peripheral neuropathy is not only associated with decrease in relevant TJPs but also exhibits alterations in TJP arrangement and loss in barrier tightness, presumably due to internalization. Specifically, semiquantification of TJP in cell-cell-contacts of microcompartments could be used in the future for routine clinical samples of patients with neuropathy.

15.
J Chem Inf Model ; 56(10): 1914-1922, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27589557

RESUMO

In this study, we investigated the ability of the general anesthetic propofol (PR) to form inclusion complexes with modified ß-cyclodextrins, including sulfobutylether-ß-cyclodextrin (SBEßCD) and hydroxypropyl-ß-cyclodextrin (HPßCD). The PR/SBEßCD and PR/HPßCD complexes were prepared and characterized, and the blood-brain barrier (BBB) permeation potential of the formulated PR was examined in vivo for the purpose of controlled drug delivery. The PR/SBEßCD complex was found to be more stable in solution with a minimal degradation constant of 0.25 h-1, a t1/2 of 2.82 h, and a Kc of 5.19 × 103 M-1 and revealed higher BBB permeability rates compared with the reference substance (PR-LIPURO) considering the calculated brain-to-blood concentration ratio (logBB) values. Additionally, the diminished PR binding affinity to SBEßCD was confirmed in molecular dynamics simulations by a maximal Gibbs free energy of binding (ΔGbind = -18.44 kcal·mol-1), indicating the more rapid PR/SBEßCD dissociation. Overall, the results demonstrated that SBEßCD has the potential to be used as a prospective candidate for drug delivery vector development to improve the pharmacokinetic and pharmacodynamic properties of general anesthetic agents at the BBB level.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Propofol/administração & dosagem , beta-Ciclodextrinas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina , Anestésicos Intravenosos/química , Anestésicos Intravenosos/farmacocinética , Animais , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Propofol/química , Propofol/farmacocinética , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética
16.
Curr Pathobiol Rep ; 4: 135-145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547510

RESUMO

PURPOSE OF REVIEW: Tight junctions (TJs) are specialized differentiations of epithelial and endothelial cell membranes. TJs play an important role in the adhesion of cells and their interaction with each other. Most cancers originate from epithelial cells. Thus, it is of significance to examine the role of TJs in the tumor microenvironment (TME) and how they affect cancer metastasis. RECENT FINDINGS: In epithelium-derived cancers, intactness of the primary tumor mass is influenced by intercellular structures as well as cell-to-cell adhesion. Irregularities of these factors may lead to tumor dissociation and subsequent metastasis. Low expression of TJs is observed among highly metastatic cancer cells. SUMMARY: In this review, we summarized findings from current literature in consideration of the role of TJs in relation to the TME and cancer. Deeper understanding of the mechanisms leading to TJ dysregulation is needed to facilitate the design and conceptualization of new and better therapeutic strategies for cancer.

17.
J Toxicol Sci ; 41(2): 175-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26961601

RESUMO

In this study, we investigated the cytotoxic effects of unmodified α-cyclodextrin (α-CD) and modified cyclodextrins, including trimethyl-ß-cyclodextrin (TRIMEB) and hydroxypropyl-ß-cyclodextrin (HPßCD), on immortalized murine microvascular endothelial (cEND) cells of the blood-brain barrier (BBB). A CellTiter-Glo viability test, performed on the cEND cells showed significant differences among the different cyclodextrins. After 24 hr of incubation, TRIMEB was the most cytotoxic, and HPßCD was non-toxic. α-CD and TRIMEB exhibited greater cytotoxicity in the Dulbecco's modified Eagle's medium than in heat-inactivated human serum indicating protective properties of the human serum. The predicted dynamic toxicity profiles (Td) for α-CD and TRIMEB indicated higher cytotoxicity for these cyclodextrins compared to the reference compound (dimethylsulfoxide). Molecular dynamics simulation of cholesterol binding to the CDs suggested that not just cholesterol but phospholipids extraction might be involved in the cytotoxicity. Overall, the results demonstrate that HPßCD has the potential to be used as a candidate for drug delivery vector development and signify a correlation between the in vitro cytotoxic effect and cholesterol binding of cyclodextrins.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ciclodextrinas/toxicidade , Células Endoteliais/efeitos dos fármacos , alfa-Ciclodextrinas/toxicidade , beta-Ciclodextrinas/toxicidade , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Barreira Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Simulação por Computador , Meios de Cultura , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Sistemas de Liberação de Medicamentos , Camundongos , Fosfolipídeos/metabolismo , alfa-Ciclodextrinas/química , alfa-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo
18.
Front Cell Neurosci ; 9: 323, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347611

RESUMO

The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1α, chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.

19.
Molecules ; 20(6): 10264-79, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26046323

RESUMO

The objective of the present investigation was to study the ability of sulfobutylether-ß-cyclodextrin (SBEßCD) to form an inclusion complex with sevoflurane (SEV), a volatile anesthetic with poor water solubility. The inclusion complex was prepared, characterized and its cellular toxicity and blood-brain barrier (BBB) permeation potential of the formulated SEV have also been examined for the purpose of controlled drug delivery. The SEV-SBEßCD complex was nontoxic to the primary brain microvascular endothelial (pEND) cells at a clinically relevant concentration of sevoflurane. The inclusion complex exhibited significantly higher BBB permeation profiles as compared with the reference substance (propranolol) concerning calculated apparent permeability values (Papp). In addition, SEV binding affinity to SBEßCD was confirmed by a minimal Gibbs free energy of binding (ΔGbind) value of -1.727 ± 0.042 kcal·mol-1 and an average binding constant (Kb) of 53.66 ± 9.24 mM indicating rapid drug liberation from the cyclodextrin amphiphilic cavity.


Assuntos
Anestésicos Inalatórios/metabolismo , Preparações de Ação Retardada , Éteres Metílicos/metabolismo , beta-Ciclodextrinas/metabolismo , Anestésicos Inalatórios/química , Anestésicos Inalatórios/farmacologia , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Permeabilidade Capilar , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Éteres Metílicos/química , Éteres Metílicos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Cultura Primária de Células , Propranolol/metabolismo , Propranolol/farmacologia , Sevoflurano , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
20.
Int J Nanomedicine ; 10: 1703-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784800

RESUMO

In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell(®) system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT-FITC rapid dissociation as an intermediate phase.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos , Fluoresceína-5-Isotiocianato , Nanotubos de Carbono , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Camundongos , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...